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Abstract

Electricity grid operators are turning to energy storage as a way of balancing
demand with variable and intermittent renewable energy sources, but have little
guidance on how to design and locate energy storage systems to maximize their
value. This paper proposes a linear program that simultaneously optimizes the
sizing and dispatch of a storage system used for temporal arbitrage on a whole-
sale energy market. Results are presented for a variety of efficiencies and battery
costs, and are simulated for 2247 transmission nodes on the California electric-
ity grid. The relationship between storage system cost and optimal reservoir
size is examined, and systems with over 4 hours of storage capacity are found
to not be cost-effective with most current battery technologies. The analysis
demonstrates that the arbitrage value of storage is not normally distributed but
rather shows a long tail of high-value nodes, and demonstrates a wider range of
values a much wider range of values than previous reported. This distribution is
found to be robust to price elasticity in the wholesale energy market, suggesting
that a small set of high-value nodes hold the highest value for development by
utilities or storage operators.
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1 1. Introduction

> 1.1. Motivation

3 The production of electricity from wind and solar energy has become a key el-
+ ement of climate change mitigation strategies, and 29 US states currently have
s set renewable energy procurement targets through Renewable Portfolio Stan-
s dards [I]. However, intermittency and variability in these energy sources may
7 lead to curtailment of renewable generation during peak hours and to increased
s reliance on peaker plants [2] - two outcomes that are environmentally and eco-
o nomically undesirable. Energy storage has been proposed as a technology that
0 can help accommodate the intermittency of the renewable energy systems, while
u also providing other services such as increasing reliability, deferring upgrade
1 costs, and providing ancillary services [3][4]. To promote development of new
13 storage systems, the California Public Utility Commission has mandated that
1 Californian utilities purchase 1.3 GW of storage by 2020 [5], and other regions
15 are considering similar policies.

16 While many researchers are working on developing low-cost battery chemistries
v and storage technologies [6], less work has focused on how to design, site, and
18 dispatch this new wave of storage systems.

19 This study characterizes the optimal sizing and siting of storage over an
2 electricity grid in order to guide policy makers, utility operators, and energy
a1 developers. Rather than studying a specific site or technology, we are interested
2 in understanding the impact of location, system efficiency, and reservoir sizing

;3 on the profitability of transmission-scale storage.

2 1.2. Prior Literature

2 The value of energy storage services can be assessed using a variety of meth-
s ods, including engineering estimates, system economic dispatch models, and
7  simulation of optimal bidding. For vertically integrated utilities, engineering

;s estimates and economic dispatch models can be used to calculate the savings
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associated with owning storage systems [3| 4} [7, [§]. However, in regions where
the energy industry has been restructured to allow open competition, the prof-
itability of a storage system can be calculated using mathematical programming
models. These tools can optimize bidding in wholesale energy markets [9] [10],
ancillary service (AS) markets [11], 12], and bidding across multiple nodes in a
network [13].

Current storage installations are dominated by large pumped-hydro facilities
which are limited to favorable geographic sites, but new technology development
has focused on modular systems that can be sited wherever the grids needs are
greatest [2 [3 [©, 14]. While this flexibility promises to be an asset to the new
storage technologies, the impact of site selection on system profitability has only
been examined in [I0] and [9], both of which considered a small number of nodes
in the PJM market.

The sizing of a storage systems energy reservoir is another important design
decision. Unlike conventional generators, the output of a storage system is
limited by the capacity of its reservoir (typically described as the number of
hours of storage available at peak output, e.g. a IMW /4h system). While large
reservoir capacities are seen in pumped-hydro storage systems due to economies
of scale, new storage technologies typically have constant marginal cost, making
such large reservoirs much more expensive [15].

Prior literature on sizing storage systems has focused on behind-the-meter
installations. In these applications, storage is installed to reduce demand charges
[3] in a commercial facility, or to smooth intermittency in a renewable energy
plant such as a wind farm [16, [I7, [I8], photovoltaic array [19], or concentrated
solar power system [20]. When storage is combined with these renewable energy
sources, optimal sizing of the storage reservoir allows the plant operator to
guarantee contractual energy delivery in the face of uncertain wind or solar
forecasts [16], 18], [19].

By contrast, an independent storage system bidding into restructured en-
ergy markets would be sized to maximize profits (or minimize utility costs).

The impact of reservoir sizing on arbitrage profits is explored through itera-
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tive simulation in [I0] and [9], but an optimal size was not identified, and no
prior literature has shown a method for endogenously optimizing the reservoir

capacity of an independent storage system.

1.3. Nowel Contributions

This paper builds on prior literature by examining the optimal sizing of a
storage system bidding into wholesale energy markets. We examine the arbi-
trage value for transmission nodes across the grid operated by the California
Independent System Operator (CAISO), allowing us to assess the statistical and
geographic distribution of storage profits.

This paper addresses gaps in prior literature by introducing the following

novel contributions:

1. Simultaneously optimizing reservoir size and system dispatch for energy
arbitrage

2. Demonstrating the dependence of optimal reservoir size on storage reser-
voir cost

3. Presenting storage values for all nodes on the transmission network of an
Independent System Operator (ISO)

4. Demonstrating that the storage profits are not uniform or normally dis-
tributed across transmission nodes, but rather show a significant tail of
high-value nodes

5. Introducing a visualization tool for graphically describing nodal profits

1.4. Outline

In Section 2, we outline the assumptions of our model, based on findings
in the literature described above. In Section 3 we propose a linear program
(LP) that simultaneously optimizes the dispatch and reservoir size for a storage
system, and then introduce the data that will be used for our analysis. In
Section 4 we present results, first for a sample of nodes in order to validate
the models output, and then for all nodes of the CAISO grid. We examine

the impact of system efficiency and reservoir cost on the profitability of the



s system, relax the assumption that the storage operator acts as a price-taker,
o and test the statistical distribution of profits across nodes. We conclude by

o1 mnoting limitations to our work.

2 2. Modeling Assumptions

0 In the formulation proposed below, we examine the sale of energy in the
w wholesale energy market, and do not consider ancillary services (regulation
s up/down, capacity reserves, etc.). Other authors have examined the co-optimization
o of arbitrage and ancillary services [12],[9} 211, 20, 22], and the current results could
o7 be similarly extended. We limit ourselves to energy arbitrage for several reasons:
e (1) not all ISOs operate ancillary service markets; (ii) the ancillary service mar-
o kets are traded at the regional level and would not affect comparisons between
o nodes; and (iii) the ancillary services markets have smaller trading volume than
w1 the wholesale energy market, and thus prices are more likely to be affected by
02 the addition of storage [3], [10].

103 We assume that the cost of constructing the storage reservoir can be repre-
s sented as a constant marginal cost, and that for accounting purposes it can be
s amortized across the lifetime of the storage system, as $§/kWh/year. This follows
s the approach outlined in [I5], and is representative for the electrochemical bat-
07 tery systems which have seen the bulk of recent development [14]. Economies of
s scale (decreasing marginal cost of reservoir capacity) are seen in pumped-hydro
o systems, flow batteries, and underground compressed-air energy storage, and
mwo  could be integrated into the current formulation as an affine decreasing cost
w function (resulting in a convex quadratic program).

12 We report results for a storage system normalized to 1kW power capacity,
u3  and consider a variety of reservoir capacities, e.g. 2, 4, or 8 hours of storage.
us  This allows results to be presented on the basis of kWh capacity for comparison
us  with other studies. We assume that our results would scale up to a large-scale
s system (MW of power and MWh of capacity).

17 We assume that the storage operator has perfect foresight of energy prices.
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While this assumption appears generous, it allows us to compute an upper bound
on storage profits, which is useful for system planning. We initially assume that
the storage system is a price-taker, i.e. that it is too small for its actions to
affect the energy price at its trading node. This assumption is then relaxed in
Section by allowing market prices to respond to the actions of the storage
operator. The assumptions of perfect foresight and price-taking behavior have

been examined for individual nodes in [I3] and [10].

3. Formulation

In the following sections we outline the mathematical formulation of our

optimization problem, and the data used in our simulations.

3.1. Mathematical Formulation

The parameters and variables used in this analysis are defined below. Note
that energy flow ¢(k) into the battery is defined as negative, and energy flow out
of the battery to the grid d(k) is defined as positive, consistent with accounting

for energy purchases as costs and sales as revenues.



k Time index, from 0 to time horizon N
At Time step size (hours)
c(k) Energy flow into the battery at time k (charging)
d(k) Energy flow out of the battery at time k (discharging)
Poharge ~ Maximum charge power capacity of the system (kW)
Piischarge Maximum discharge power capacity of the system (kW)

ceria(k)  Nodal electricity clearing price ($/kWh)

133 Min One-way system efficiency when charging
Nout One-way system efficiency when discharging
E(k) Energy level in reservoir at time k
Fin Minimum allowable energy level as portion of capacity
Frax Maximum allowable energy level as portion of capacity
FEinit Starting energy level of the storage system
h Reservoir capacity (kWh)
0% Annualized cost of constructing/purchasing one kWh of reservoir capacity ($/kWh/yr)

Asymmetry in the power limits and efficiencies can be accounted for by
adjusting the appropriate parameters. Using these variables, the optimization
problem can be stated as maximizing the net profit from buying and selling
energy on the wholesale market, after considering the cost for constructing h

hours of storage capacity:

N
vid (k) At (e(k) + d(k)) — hyPaischarge 1
0 5 gy Dy o (RIAR )+ () = ey P 1)

Subject to the following constraints:

Poarge < ¢(k) <0 Yk =1..N 2)

0 < d(k) < Paischarge Vk=1..N (3)

hEmin < E(k) < hEmae k= 0...N (4)

E(k) = E(k — 1) + c(k)Atn + d(k) At frowe Yk = 1...N (5)
E(0) = hEipt (6)

h>0 1)
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Figure 1: Example of Location Marginal Price (LMP) distribution on the CAISO grid. Each
circle represents an LMP node on the the CAISO grid. Data from 4PM PDT, August 18 2013

In this formulation, the signs of the optimization variables ¢(k) and d(k) are
constrained in order to accommodate the inefficiency in the system while pre-
serving linearity in the constraints. Although it is compact, this model advances
prior literature by simultaneously calculating both optimal reservoir size h and
the optimal storage dispatch pattern E(k).

As the objective and all constraints are affine in the optimization variables
c(k), d(k), E(k), and h, this optimization can be solved with standard solvers

for linear programs, allowing for rapid simulation of thousands of scenarios.

3.2. Data

Data on the day-ahead location marginal price (LMP) of energy in the
CAISO power grid for calendar year 2013 was collected from the web portal
of the of the California Independent System Operator [23].

These LMPs reflect the clearing price at which energy sales are settled on the
CAISO grid, and would be the price at which a transmission-connected storage

system would buy and sell energy. In the day-ahead market, participants bid
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in on-hour blocks, and all participants bidding at a node receive the hourly
clearing price for that node. Data was collected for the 2247 LMP nodes for
which location information (latitude and longitude) is available, as shown in
Fig. [1

We set Peparge = —1 and Pajscharge = 1 to represent 1kW of power capacity.
For ease of presentation, we will assume that the depth of discharge is not
constrained, i.e. Fn;n = 0 and Fy.c = 1. While many storage technologies have
depth-of-discharge constraints due to electrochemical or physical constraints,
the constraint has the simple effect of adjusting the effective size of the storage
reservoir: a 5h reservoir with an 80% depth-of-discharge constraint would show
the same optimal trading behavior as a 4h system with no depth-of-discharge
constraint. Except where otherwise noted, all simulations were conducted with
a round-trip efficiency of 90%, which is assumed to be the product of symmetric

charging and discharging inefficiencies (1, = 7jout = 0.95).

4. Results

Because we assume the storage system acts as a price-taker and has per-
fect price foresight, the results below represent best-case arbitrage profits for
a given power-to-energy ratio. For a merchant storage operator to be prof-
itable, the arbitrage profits would need to cover average costs, which we expect
will be dominated by the annualized costs of the battery and power system
[15]. For this reason, we will refer to the value of the objective function as
the long-run profits. We refer to the trading profits excluding the costs of the
reservoir construction as the short-run trading profits [24]. Both are presented
as $/kWh/year. For electrochemical batteries that degrade as the system is
repeatedly charged and discharged, an important performance metric is profit
per cycle (expressed here as $/kWh/1000 cycles). This is calculated by dividing
the short-run trading profits by the number of charge/discharge cycles during

the year, and normalizing to 1000 cycles.
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Charge/Discharge Behavior: Varying Reservoir Size
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Figure 2: Example of the impact of reservoir size on optimal charging behavior, while system
efficiency is held constant. The smaller system is able to capture peak price swings, but a
larger reservoir allows the system to take advantage of sustained price differences- increasing

profits but increasing construction costs.

4.1. Validation

We validate the output of the linear program by evaluating simulation out-
put against the charge/discharge behavior and system size which would be pre-
dicted by microeconomic principles, to check that the reported behavior is both
economically efficient and profit-maximizing.

As the optimization variables c(k), d(k), and E(k) are linked through the
constraints [2] we can capture the full system behavior by examining just the
reservoir level (k). In Fig. [2|and Fig. We plot the charge level for a randomly
chosen LMP node from the CAISO dataset (BARRY_6_N001 is shown). Two
days in August 2013 are shown, chosen for exhibiting periods of both low and
high price volatility.

In Fig. [2| the two reservoir sizes are illustrated, obtained by fixing h in the
optimization problem and examining the resulting values of E(k). We see that
the 6h system charges throughout the morning low-price period, and discharges
throughout the evening high-price hours. The smaller system is able to more
selectively charge and discharge at extreme price events, but is limited in its

ability to capture value from sustained price differences.

10
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Figure 3: Example of the impact of storage system round-trip efficiency on optimal charging
behavior, assuming a constant reservoir size. The storage system will only discharge when
price differences are greater than the cost of efficiency losses, leading the high-efficiency system

to cycle more often.

In Fig. |3| we examine the impact of changing the round-trip efficiency while
fixing the reservoir capacity at one hour of storage (h = 1.0). At the lowest
efficiency (60%), the system only charges once (during the second day), as price
differences during the first day are not great enough to outweigh the round-trip
efficiency losses. As efficiency increases to 80%, the system is able to take full
advantage of diurnal price differences, and begins to arbitrage morning/midday
price swings.

This reflects the economically efficient behavior of as charging whenever
the price difference between two local extrema is greater than the energy loss,
1/ (MinMout ), i-e. when the short-run trading profits are greater than the trans-
action cost created by round-trip inefficiencies [24].

In Fig. [4f the annualized storage price 7 is held constant at $5/kWh/year
while the reservoir size h was constrained to take on a range of values as in Fig.
The long-term operator profits (including reservoir cost) are plotted against
reservoir size h, and are shown to peak at a value of h = 2.0, which coincides
with the optimal solution of the linear program when h is unconstrained.

At low reservoir sizes in Fig. [d] the operator charges and discharges the sys-

11
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Figure 4: Example of the impact of reservoir sizing on long-run operator profits (including
the cost of constructing the reservoir). At low reservoir sizes, the operator is not able to
take advantage of all arbitrage opportunities. At large reservoir sizes, construction costs
outweigh arbitrage benefits. At optimum, the marginal benefit of additional reservoir capacity
is balanced by construction costs. Data is shown for the BARRY_6_N00O1 node in 2013 and

assumes an amortized reservoir cost $5/kWh/year.

tem at the hours with the most extreme price events (similar to the 2h system in
Fig. . As reservoir capacity increases the operator is able to capture off-peak
price differences, but because price differences are smaller the marginal benefit
of this additional reservoir capacity decreases. When the reservoir is below op-
timal size, the increase in trading profits is greater than the annualized costs of
constructing the additional reservoir capacity. At optimum, the marginal bene-
fits of adding capacity are precisely equal to the annualized costs of construction
the additional capacity, and the operator’s profits are maximized [24]. If the
reservoir size is increased beyond the optimum, the annualized costs of storage
construction overwhelm short-run trading profits, and the storage system may
operate at a net loss.

The shape of this curve will differ for each node, as the returns to increasing
storage size are determined by daily, weekly, and seasonal fluctuations in the

location marginal price, which will depend on a node’s local consumption and

12
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Figure 5: Optimal reservoir size in hours of storage capacity with varying annualized con-
struction costs +y, across all CAISO LMP nodes. Optimal size of the storage system decreases
when construction costs increase, as the marginal benefits from a larger reservoir are more

rapidly offset by construction costs.

congestion patterns.

4.2. Sensitivity Analysis: Reservoir Construction Cost

This analysis can be extended by considering a range of reservoir costs,
representing the variety of system costs associated with different storage tech-
nologies. In Fig. [5| the optimal reservoir size is plotted for each node over a
range of annualized reservoir costs v ranging from $1-$20/kWh /year, assessed
at $0.10/kWh/year intervals. Note that because the problem is formulated as
an LP the resulting curves are not smooth, as the optimum jumps between
vertices of the polyhedron defining the feasible region.

As storage price increases we see a monotonic decrease in optimal reservoir
size. As shown in Fig. [d] the optimal reservoir size occurs when the marginal
benefit equals the marginal cost of the additional reservoir capacity: as cost

increases this optimum will come at lower reservoir sizes.

13
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Figure 6: Short-run arbitrage profits for each node, plotted at varying efficiencies for a
1kW/1kWh system. Each node is plotted at 1% opacity to show the distribution of values at

each efficiency.

4.3. Sensitivity Analysis: Storage System FEfficiency

A key differentiator between storage technologies is round-trip efficiency,
which also has an impact on the optimal dispatch schedule as was shown in
Fig. To explore the impact of system efficiency on system operation, the
optimization was run for all nodes while varying round-trip efficiency from 40%

to 100%. This reflects the full range of efficiency values seen in common storage

technologies [6], [15].

We examine three metrics: short-run trading profits, number of charge/discharge

cycles, and average profits per cycle. The latter two metrics are relevant for
many electrochemical battery technologies which have a limited cycle life [15].
For clarity of presentation, in the results below the reservoir size was fixed
at h = 1.0 (i.e. a 1kW/1kWh system), and results are presented as short-run
arbitrage profits excluding reservoir costs. For each node and efficiency, an
optimal size could be derived as in Section
As efficiency increases, the storage system has fewer losses, increasing profits

for a given temporal fluctuation in wholesale energy prices. Simultaneously, the

14
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Figure 7: Annual cycle count at each node with varying efficiency, 1kW/1kWh system. Each

node is plotted at 1% opacity to show the distribution of values at each efficiency.

storage operator makes more transactions because they can profitably arbitrage
smaller price fluctuations. These effects combine to create a slightly nonlinear
increase in profits with increasing efficiency, as shown in Fig. [6] A small number
of nodes show high profits at low efficiencies due to significant negative price
events, when inefficient loads would be paid for their ability to consume more
energy.

In Fig. the number of charge/discharge cycles is plotted, and shows a
slight plateau around 365 charges/year from arbitraging diurnal price differ-
ences. There is a rapid increase in cycle count at high efficiencies because the
optimization takes advantage of an increasing number of small variations in
energy prices. While diurnal and midday/evening price differences occur very
regularly, the more frequent trading seen above 95% efficiency is due to minor
price fluctuations that may be difficult to predict without perfect foresight.

The per-cycle profits shown in Fig. [§] stay fairly constant over the range of
60-90% efficient systems, as the increase in profits is balanced by the increase
in number of charge/discharge cycles. However, the per-cycle profits taper dra-

matically at high efficiencies as the operator chases the small profits associated

15
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system. Each node is plotted at 1% opacity to show the distribution of values.

with frequent hourly price swings.

4.4. Comparison with Prior Results

Previous literature estimated the arbitrage value of storage on the CAISO
grid to be in the range of $3-10/kWh/yr [3,[12]. These results are consistent with
the median values shown above, but miss the long tail of high-value nodes. By
assessing all LMP nodes, we see that there is a much wider range than previously
reported, and that reporting a single value does not sufficiently characterize the
distribution of storage value.

Comparing our per-cycle profitability results with the storage system cost
and lifetime estimates reported in [I5] we find that arbitrage-only profits at high-
value nodes could cover the capital costs of pumped-hydro storage, underground
compressed-air energy storage, lead-acid batteries with carbon electrodes, and
the DOE long-term electrochemical battery cost target. These findings are
consistent with existing deployments, which are mostly comprised of pumped-

hydro storage [14].

While previous literature has not examined the optimal sizing of a transmission-

scale storage system, the optimal sizes found here can be compared with current

16
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storage installations. Consistent with our results, high-capacity (84 hour) reser-
voirs are only observed in pumped-hydro storage systems, while electrochemical
battery systems are most frequently installed in 1-hour or smaller reservoir ca-

pacities [14].

4.5. Relaxing the Price-Taker Assumption

The model presented above in [1| assumes that the LMP values are not im-
pacted by the storage operator’s decision, but in reality a storage system used
for arbitrage would smooth prices by providing additional supply when prices
are high and additional demand when prices are low [4, [24]. In the following
section we introduce a method for relaxing this price-taker assumption and show
that the relaxation reduces profits for each node, but does not affect the relative
distribution of profits across the grid.

The impact of market elasticity on arbitrage profits in the PJM market was
assessed in [I0], using regional trading quantities and clearing prices. However,
expanding this approach to nodal LMP calculations is difficult: transaction
quantities are not available for individual LMP nodes on the CAISO grid, and
local congestion creates nonlinear price elasticity [25].

To overcome these challenges, we propose a simple method to approximate
the impact of the storage system on local prices, without assuming that we have
a linear elasticity or residual demand curve. We assume that buying energy
will drive the market price up by a factor a, and selling energy will decrease
prices by the same factor a, regardless of the quantity sold. For example, when
a = 0.10, we assume that the LMP increases by 10% whenever the storage
system is charged, and the LMP decreases by 10% whenever the storage system
discharges.

This does not affect the constraints [2] and only requires a linear modification

to the objective function [I} which becomes:

N
id (k)AL ((1 k 1 — a)d(k)) — hyPaischarge
5 0 D AL () 0) (1= ) AE) = ) P (9

17
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and is increased by a when the storage system buys energy. While profits decrease, the

distribution of the profits across nodes is preserved.

For a given value of «, the linearity of the problem is preserved. Because
each node faces different transmission constraints and supply curves, no single
value of a can be applied for all nodes- at each node, @ would need to be
estimated from supply disruptions, a study outside of the scope of the present
work. Instead, we evaluate a range of values for « in Fig. [9] to see the impact of
price sensitivity to the price-taker assumption on the profitability of a storage
operator under a variety of conditions. As in Section [£:3] we present short-run
profits for a 1kW/1kWh system at each LMP node.

As « increases, the arbitrage potential decreases as price variations are
smoothed out. However, the relative ordering and distribution of nodes is largely
unaffected: our prior conclusions about the distribution and normality of nodes
remain unaffected. If price/volume data were available, this assessment could be
expanded to include a linear residual demand function at each node, resulting

in a convex quadratic program as described in [10].
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Figure 10: Histogram of nodal profits at 90% efficiency for 1kW/1kWh system, with best fit

of a normal distribution (estimated with maximum likelihood estimation)

4.6. Distribution of Results

In the results above, storage profits are seen to not be uniform across nodes,
but instead display a random component. If we were to a priori think of storage
profits as the weighted sum of many uniform random variables (congestion,
load, renewable energy intermittency, etc.), the Central Limit Theorem suggests
that storage values would be distributed normally. However, in the results
presented above and in Fig. the distribution of storage profits appears to
be significantly skewed.

Using both the Kolmogorov-Smirnov and Jarque-Bera normality tests [26]
on each of the efficiencies and metrics above, we can reject at the 1% significance
level the a priori hypothesis of normal distribution. These findings emphasize
the significance of high-value nodes in understanding storage feasibility, and
how storage site location dictates system profitability.

There appears to be a bimodal distribution in Fig. which may indicate
additional structure within this distribution; we plan to analyze this in future

work.
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Figure 11: Plot of short-run trading profits from energy arbitrage of a 90% efficient 1kW /1kWh
system at LMP nodes on the California ISO grid. Broad regions of high-value nodes in the
Northern and Southern coastal regions suggest large regions of congestion where storage may

have greatest impact.

4.7. Geographic Variation in Storage Value

The profitability of storage systems at each LMP was mapped out in a GIS-
like web application which the authors built to allow researchers to visualize
price data on the CAISO grid [27]. This allows for the geographic localization of
high-value and low-value nodes, and assessment of spatial trends. An example
of this mapping application is shown in Fig. [[I} highlighting annual trading
profits for the 90% efficiency scenario. Note the clustering of higher-value nodes
in the Eureka region and the San Diego foothills, suggesting that congestion in

these areas may be partly relieved by the deployment of storage.
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5. Discussion

5.1. Limitations

By construction, this study has only examined transmission-scale storage
bidding into the wholesale energy market. Under current regulations, these
results do not apply to behind-the-meter storage or vehicle-to-grid services, but
could be applied if aggregators were allowed to bid into the wholesale energy
market [28§].

We only consider bidding into the day-ahead energy market, but the results
could be extended to cover sequential markets and ancillary services (AS), as has
been done for single nodes in [I11, 12, [22]. Since AS markets cover large regions
(the CAISO grid has several thousand price nodes but only three ancillary
service markets), the inclusion of AS markets would shift the profits of all storage
operators in the AS market area without affecting their relative distribution.

The current results reflect a best-case scenario, since they are based on
perfect foresight and price-taking behavior using historical market data. The
significance of diurnal and morning/evening bidding in most efficiency levels was
shown in Fig. [7] suggesting that profits are relatively insensitive to relaxing the
perfect foresight assumption (as has been done in [10] and [13]). The price-taker
assumption was discussed in Section and [I0] and does not affect our con-
clusions about optimal sizing, distribution of results, or geographic distribution
of high-value nodes.

Only price data for 2013 was analyzed; the inclusion of a larger data set
would increase the robustness of the results by introducing variance in natural
gas prices, hydropower availability, and renewable energy deployment. The
optimal siting of a new storage system would also require forecasting future
energy prices under different scenarios of renewable energy penetration.

We have assumed that storage has a constant marginal cost, an assumption
which could be relaxed for system which have significant economies of scale
(pumped-hydro storage, flow batteries, and compressed-air energy storage) by

replacing v with an affine function of h, which would turn the problem into
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a convex quadratic program. We have also assumed that the impact of the
storage system on energy prices can be represented by a constant factor, a
convenient proxy in the absence of historical price/quantity curves. For a specific
node, a linear price elasticity or residual demand function could be integrated
and result in a convex quadratic objective function. These two modifications
modifications (affine economies of scale and linear price elasticity) involve affine
terms in separate variables, and thus can both be integrated while preserving

the convexity of the formulation.

5.2. Conclusion

Using historic price data for 2247 price nodes on the California electricity
grid, we utilized a linear program to simultaneously optimize the dispatch and
reservoir sizing of a storage system for temporal arbitrage in the day-ahead
wholesale energy market. We find that the optimal reservoir size is strongly
dependent on installed costs, and that systems with 4 hours of storage or more
are only optimal when annualized reservoir costs are below $10/kWh/year. We
explore the dependence of system profitability on efficiency, finding profits of $7-
17/kWh/year or $10-27 /kWh/1000 cycles for a 90% efficient storage system with
1 hour of reservoir capacity. We find a long tail of nodes that are of significantly
higher value than have been reported in previous studies, and can reject the
hypothesis that storage values are normally distributed. Our revenue estimates
show that some existing technologies reported in [I5] may be profitable in the
highest-value nodes. These results will be of interest to policy makers, utility
planners, and storage developers, and will help guide the design and siting of

new transmission-scale energy storage systems.
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