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Abstract

Electricity grid operators are turning to energy storage as a way of balancing

demand with variable and intermittent renewable energy sources, but have little

guidance on how to design and locate energy storage systems to maximize their

value. This paper proposes a linear program that simultaneously optimizes the

sizing and dispatch of a storage system used for temporal arbitrage on a whole-

sale energy market. Results are presented for a variety of efficiencies and battery

costs, and are simulated for 2247 transmission nodes on the California electric-

ity grid. The relationship between storage system cost and optimal reservoir

size is examined, and systems with over 4 hours of storage capacity are found

to not be cost-effective with most current battery technologies. The analysis

demonstrates that the arbitrage value of storage is not normally distributed but

rather shows a long tail of high-value nodes, and demonstrates a wider range of

values a much wider range of values than previous reported. This distribution is

found to be robust to price elasticity in the wholesale energy market, suggesting

that a small set of high-value nodes hold the highest value for development by

utilities or storage operators.
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1. Introduction1

1.1. Motivation2

The production of electricity from wind and solar energy has become a key el-3

ement of climate change mitigation strategies, and 29 US states currently have4

set renewable energy procurement targets through Renewable Portfolio Stan-5

dards [1]. However, intermittency and variability in these energy sources may6

lead to curtailment of renewable generation during peak hours and to increased7

reliance on peaker plants [2] - two outcomes that are environmentally and eco-8

nomically undesirable. Energy storage has been proposed as a technology that9

can help accommodate the intermittency of the renewable energy systems, while10

also providing other services such as increasing reliability, deferring upgrade11

costs, and providing ancillary services [3][4]. To promote development of new12

storage systems, the California Public Utility Commission has mandated that13

Californian utilities purchase 1.3 GW of storage by 2020 [5], and other regions14

are considering similar policies.15

While many researchers are working on developing low-cost battery chemistries16

and storage technologies [6], less work has focused on how to design, site, and17

dispatch this new wave of storage systems.18

This study characterizes the optimal sizing and siting of storage over an19

electricity grid in order to guide policy makers, utility operators, and energy20

developers. Rather than studying a specific site or technology, we are interested21

in understanding the impact of location, system efficiency, and reservoir sizing22

on the profitability of transmission-scale storage.23

1.2. Prior Literature24

The value of energy storage services can be assessed using a variety of meth-25

ods, including engineering estimates, system economic dispatch models, and26

simulation of optimal bidding. For vertically integrated utilities, engineering27

estimates and economic dispatch models can be used to calculate the savings28
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associated with owning storage systems [3, 4, 7, 8]. However, in regions where29

the energy industry has been restructured to allow open competition, the prof-30

itability of a storage system can be calculated using mathematical programming31

models. These tools can optimize bidding in wholesale energy markets [9, 10],32

ancillary service (AS) markets [11, 12], and bidding across multiple nodes in a33

network [13].34

Current storage installations are dominated by large pumped-hydro facilities35

which are limited to favorable geographic sites, but new technology development36

has focused on modular systems that can be sited wherever the grids needs are37

greatest [2, 3, 6, 14]. While this flexibility promises to be an asset to the new38

storage technologies, the impact of site selection on system profitability has only39

been examined in [10] and [9], both of which considered a small number of nodes40

in the PJM market.41

The sizing of a storage systems energy reservoir is another important design42

decision. Unlike conventional generators, the output of a storage system is43

limited by the capacity of its reservoir (typically described as the number of44

hours of storage available at peak output, e.g. a 1MW/4h system). While large45

reservoir capacities are seen in pumped-hydro storage systems due to economies46

of scale, new storage technologies typically have constant marginal cost, making47

such large reservoirs much more expensive [15].48

Prior literature on sizing storage systems has focused on behind-the-meter49

installations. In these applications, storage is installed to reduce demand charges50

[3] in a commercial facility, or to smooth intermittency in a renewable energy51

plant such as a wind farm [16, 17, 18], photovoltaic array [19], or concentrated52

solar power system [20]. When storage is combined with these renewable energy53

sources, optimal sizing of the storage reservoir allows the plant operator to54

guarantee contractual energy delivery in the face of uncertain wind or solar55

forecasts [16, 18, 19].56

By contrast, an independent storage system bidding into restructured en-57

ergy markets would be sized to maximize profits (or minimize utility costs).58

The impact of reservoir sizing on arbitrage profits is explored through itera-59
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tive simulation in [10] and [9], but an optimal size was not identified, and no60

prior literature has shown a method for endogenously optimizing the reservoir61

capacity of an independent storage system.62

1.3. Novel Contributions63

This paper builds on prior literature by examining the optimal sizing of a64

storage system bidding into wholesale energy markets. We examine the arbi-65

trage value for transmission nodes across the grid operated by the California66

Independent System Operator (CAISO), allowing us to assess the statistical and67

geographic distribution of storage profits.68

This paper addresses gaps in prior literature by introducing the following69

novel contributions:70

1. Simultaneously optimizing reservoir size and system dispatch for energy71

arbitrage72

2. Demonstrating the dependence of optimal reservoir size on storage reser-73

voir cost74

3. Presenting storage values for all nodes on the transmission network of an75

Independent System Operator (ISO)76

4. Demonstrating that the storage profits are not uniform or normally dis-77

tributed across transmission nodes, but rather show a significant tail of78

high-value nodes79

5. Introducing a visualization tool for graphically describing nodal profits80

1.4. Outline81

In Section 2, we outline the assumptions of our model, based on findings82

in the literature described above. In Section 3 we propose a linear program83

(LP) that simultaneously optimizes the dispatch and reservoir size for a storage84

system, and then introduce the data that will be used for our analysis. In85

Section 4 we present results, first for a sample of nodes in order to validate86

the models output, and then for all nodes of the CAISO grid. We examine87

the impact of system efficiency and reservoir cost on the profitability of the88
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system, relax the assumption that the storage operator acts as a price-taker,89

and test the statistical distribution of profits across nodes. We conclude by90

noting limitations to our work.91

2. Modeling Assumptions92

In the formulation proposed below, we examine the sale of energy in the93

wholesale energy market, and do not consider ancillary services (regulation94

up/down, capacity reserves, etc.). Other authors have examined the co-optimization95

of arbitrage and ancillary services [12, 9, 21, 20, 22], and the current results could96

be similarly extended. We limit ourselves to energy arbitrage for several reasons:97

(i) not all ISOs operate ancillary service markets; (ii) the ancillary service mar-98

kets are traded at the regional level and would not affect comparisons between99

nodes; and (iii) the ancillary services markets have smaller trading volume than100

the wholesale energy market, and thus prices are more likely to be affected by101

the addition of storage [3, 10].102

We assume that the cost of constructing the storage reservoir can be repre-103

sented as a constant marginal cost, and that for accounting purposes it can be104

amortized across the lifetime of the storage system, as $/kWh/year. This follows105

the approach outlined in [15], and is representative for the electrochemical bat-106

tery systems which have seen the bulk of recent development [14]. Economies of107

scale (decreasing marginal cost of reservoir capacity) are seen in pumped-hydro108

systems, flow batteries, and underground compressed-air energy storage, and109

could be integrated into the current formulation as an affine decreasing cost110

function (resulting in a convex quadratic program).111

We report results for a storage system normalized to 1kW power capacity,112

and consider a variety of reservoir capacities, e.g. 2, 4, or 8 hours of storage.113

This allows results to be presented on the basis of kWh capacity for comparison114

with other studies. We assume that our results would scale up to a large-scale115

system (MW of power and MWh of capacity).116

We assume that the storage operator has perfect foresight of energy prices.117
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While this assumption appears generous, it allows us to compute an upper bound118

on storage profits, which is useful for system planning. We initially assume that119

the storage system is a price-taker, i.e. that it is too small for its actions to120

affect the energy price at its trading node. This assumption is then relaxed in121

Section 4.5 by allowing market prices to respond to the actions of the storage122

operator. The assumptions of perfect foresight and price-taking behavior have123

been examined for individual nodes in [13] and [10].124

3. Formulation125

In the following sections we outline the mathematical formulation of our126

optimization problem, and the data used in our simulations.127

3.1. Mathematical Formulation128

The parameters and variables used in this analysis are defined below. Note129

that energy flow c(k) into the battery is defined as negative, and energy flow out130

of the battery to the grid d(k) is defined as positive, consistent with accounting131

for energy purchases as costs and sales as revenues.132
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k Time index, from 0 to time horizon N

∆t Time step size (hours)

c(k) Energy flow into the battery at time k (charging)

d(k) Energy flow out of the battery at time k (discharging)

Pcharge Maximum charge power capacity of the system (kW)

Pdischarge Maximum discharge power capacity of the system (kW)

cgrid(k) Nodal electricity clearing price ($/kWh)

ηin One-way system efficiency when charging

ηout One-way system efficiency when discharging

E(k) Energy level in reservoir at time k

Emin Minimum allowable energy level as portion of capacity

Emax Maximum allowable energy level as portion of capacity

Einit Starting energy level of the storage system

h Reservoir capacity (kWh)

γ Annualized cost of constructing/purchasing one kWh of reservoir capacity ($/kWh/yr)

133

Asymmetry in the power limits and efficiencies can be accounted for by

adjusting the appropriate parameters. Using these variables, the optimization

problem can be stated as maximizing the net profit from buying and selling

energy on the wholesale market, after considering the cost for constructing h

hours of storage capacity:

max
c(k),d(k),E(k),h

N∑
k=1

cgrid(k)∆t (c(k) + d(k))− hγPdischarge (1)

Subject to the following constraints:

Pcharge ≤ c(k) ≤ 0 ∀k = 1...N (2)

0 ≤ d(k) ≤ Pdischarge ∀k = 1...N (3)

hEmin ≤ E(k) ≤ hEmax ∀k = 0...N (4)

E(k) = E(k − 1) + c(k)∆tηin + d(k)∆t/ηout ∀k = 1...N (5)

E(0) = hEinit (6)

h ≥ 0 (7)
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Figure 1: Example of Location Marginal Price (LMP) distribution on the CAISO grid. Each

circle represents an LMP node on the the CAISO grid. Data from 4PM PDT, August 18 2013

In this formulation, the signs of the optimization variables c(k) and d(k) are134

constrained in order to accommodate the inefficiency in the system while pre-135

serving linearity in the constraints. Although it is compact, this model advances136

prior literature by simultaneously calculating both optimal reservoir size h and137

the optimal storage dispatch pattern E(k).138

As the objective and all constraints are affine in the optimization variables139

c(k), d(k), E(k), and h, this optimization can be solved with standard solvers140

for linear programs, allowing for rapid simulation of thousands of scenarios.141

3.2. Data142

Data on the day-ahead location marginal price (LMP) of energy in the143

CAISO power grid for calendar year 2013 was collected from the web portal144

of the of the California Independent System Operator [23].145

These LMPs reflect the clearing price at which energy sales are settled on the146

CAISO grid, and would be the price at which a transmission-connected storage147

system would buy and sell energy. In the day-ahead market, participants bid148
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in on-hour blocks, and all participants bidding at a node receive the hourly149

clearing price for that node. Data was collected for the 2247 LMP nodes for150

which location information (latitude and longitude) is available, as shown in151

Fig. 1.152

We set Pcharge = −1 and Pdischarge = 1 to represent 1kW of power capacity.153

For ease of presentation, we will assume that the depth of discharge is not154

constrained, i.e. Emin = 0 and Emax = 1. While many storage technologies have155

depth-of-discharge constraints due to electrochemical or physical constraints,156

the constraint has the simple effect of adjusting the effective size of the storage157

reservoir: a 5h reservoir with an 80% depth-of-discharge constraint would show158

the same optimal trading behavior as a 4h system with no depth-of-discharge159

constraint. Except where otherwise noted, all simulations were conducted with160

a round-trip efficiency of 90%, which is assumed to be the product of symmetric161

charging and discharging inefficiencies (ηin = ηout ≈ 0.95).162

4. Results163

Because we assume the storage system acts as a price-taker and has per-164

fect price foresight, the results below represent best-case arbitrage profits for165

a given power-to-energy ratio. For a merchant storage operator to be prof-166

itable, the arbitrage profits would need to cover average costs, which we expect167

will be dominated by the annualized costs of the battery and power system168

[15]. For this reason, we will refer to the value of the objective function as169

the long-run profits. We refer to the trading profits excluding the costs of the170

reservoir construction as the short-run trading profits [24]. Both are presented171

as $/kWh/year. For electrochemical batteries that degrade as the system is172

repeatedly charged and discharged, an important performance metric is profit173

per cycle (expressed here as $/kWh/1000 cycles). This is calculated by dividing174

the short-run trading profits by the number of charge/discharge cycles during175

the year, and normalizing to 1000 cycles.176
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Charge/Discharge Behavior: Varying Reservoir Size

Figure 2: Example of the impact of reservoir size on optimal charging behavior, while system

efficiency is held constant. The smaller system is able to capture peak price swings, but a

larger reservoir allows the system to take advantage of sustained price differences- increasing

profits but increasing construction costs.

4.1. Validation177

We validate the output of the linear program by evaluating simulation out-178

put against the charge/discharge behavior and system size which would be pre-179

dicted by microeconomic principles, to check that the reported behavior is both180

economically efficient and profit-maximizing.181

As the optimization variables c(k), d(k), and E(k) are linked through the182

constraints 2, we can capture the full system behavior by examining just the183

reservoir level E(k). In Fig. 2 and Fig. 3 we plot the charge level for a randomly184

chosen LMP node from the CAISO dataset (BARRY 6 N001 is shown). Two185

days in August 2013 are shown, chosen for exhibiting periods of both low and186

high price volatility.187

In Fig. 2, the two reservoir sizes are illustrated, obtained by fixing h in the188

optimization problem and examining the resulting values of E(k). We see that189

the 6h system charges throughout the morning low-price period, and discharges190

throughout the evening high-price hours. The smaller system is able to more191

selectively charge and discharge at extreme price events, but is limited in its192

ability to capture value from sustained price differences.193
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Figure 3: Example of the impact of storage system round-trip efficiency on optimal charging

behavior, assuming a constant reservoir size. The storage system will only discharge when

price differences are greater than the cost of efficiency losses, leading the high-efficiency system

to cycle more often.

In Fig. 3 we examine the impact of changing the round-trip efficiency while194

fixing the reservoir capacity at one hour of storage (h = 1.0). At the lowest195

efficiency (60%), the system only charges once (during the second day), as price196

differences during the first day are not great enough to outweigh the round-trip197

efficiency losses. As efficiency increases to 80%, the system is able to take full198

advantage of diurnal price differences, and begins to arbitrage morning/midday199

price swings.200

This reflects the economically efficient behavior of as charging whenever201

the price difference between two local extrema is greater than the energy loss,202

1/ (ηinηout), i.e. when the short-run trading profits are greater than the trans-203

action cost created by round-trip inefficiencies [24].204

In Fig. 4 the annualized storage price γ is held constant at $5/kWh/year205

while the reservoir size h was constrained to take on a range of values as in Fig.206

2. The long-term operator profits (including reservoir cost) are plotted against207

reservoir size h, and are shown to peak at a value of h = 2.0, which coincides208

with the optimal solution of the linear program when h is unconstrained.209

At low reservoir sizes in Fig. 4, the operator charges and discharges the sys-210
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Figure 4: Example of the impact of reservoir sizing on long-run operator profits (including

the cost of constructing the reservoir). At low reservoir sizes, the operator is not able to

take advantage of all arbitrage opportunities. At large reservoir sizes, construction costs

outweigh arbitrage benefits. At optimum, the marginal benefit of additional reservoir capacity

is balanced by construction costs. Data is shown for the BARRY 6 N001 node in 2013 and

assumes an amortized reservoir cost $5/kWh/year.

tem at the hours with the most extreme price events (similar to the 2h system in211

Fig. 2). As reservoir capacity increases the operator is able to capture off-peak212

price differences, but because price differences are smaller the marginal benefit213

of this additional reservoir capacity decreases. When the reservoir is below op-214

timal size, the increase in trading profits is greater than the annualized costs of215

constructing the additional reservoir capacity. At optimum, the marginal bene-216

fits of adding capacity are precisely equal to the annualized costs of construction217

the additional capacity, and the operator’s profits are maximized [24]. If the218

reservoir size is increased beyond the optimum, the annualized costs of storage219

construction overwhelm short-run trading profits, and the storage system may220

operate at a net loss.221

The shape of this curve will differ for each node, as the returns to increasing222

storage size are determined by daily, weekly, and seasonal fluctuations in the223

location marginal price, which will depend on a node’s local consumption and224
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Figure 5: Optimal reservoir size in hours of storage capacity with varying annualized con-

struction costs γ, across all CAISO LMP nodes. Optimal size of the storage system decreases

when construction costs increase, as the marginal benefits from a larger reservoir are more

rapidly offset by construction costs.

congestion patterns.225

4.2. Sensitivity Analysis: Reservoir Construction Cost226

This analysis can be extended by considering a range of reservoir costs,227

representing the variety of system costs associated with different storage tech-228

nologies. In Fig. 5 the optimal reservoir size is plotted for each node over a229

range of annualized reservoir costs γ ranging from $1-$20/kWh/year, assessed230

at $0.10/kWh/year intervals. Note that because the problem is formulated as231

an LP the resulting curves are not smooth, as the optimum jumps between232

vertices of the polyhedron defining the feasible region.233

As storage price increases we see a monotonic decrease in optimal reservoir234

size. As shown in Fig. 4, the optimal reservoir size occurs when the marginal235

benefit equals the marginal cost of the additional reservoir capacity: as cost236

increases this optimum will come at lower reservoir sizes.237
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Figure 6: Short-run arbitrage profits for each node, plotted at varying efficiencies for a

1kW/1kWh system. Each node is plotted at 1% opacity to show the distribution of values at

each efficiency.

4.3. Sensitivity Analysis: Storage System Efficiency238

A key differentiator between storage technologies is round-trip efficiency,239

which also has an impact on the optimal dispatch schedule as was shown in240

Fig. 3. To explore the impact of system efficiency on system operation, the241

optimization was run for all nodes while varying round-trip efficiency from 40%242

to 100%. This reflects the full range of efficiency values seen in common storage243

technologies [6, 15].244

We examine three metrics: short-run trading profits, number of charge/discharge245

cycles, and average profits per cycle. The latter two metrics are relevant for246

many electrochemical battery technologies which have a limited cycle life [15].247

For clarity of presentation, in the results below the reservoir size was fixed248

at h = 1.0 (i.e. a 1kW/1kWh system), and results are presented as short-run249

arbitrage profits excluding reservoir costs. For each node and efficiency, an250

optimal size could be derived as in Section 4.2.251

As efficiency increases, the storage system has fewer losses, increasing profits252

for a given temporal fluctuation in wholesale energy prices. Simultaneously, the253
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Figure 7: Annual cycle count at each node with varying efficiency, 1kW/1kWh system. Each

node is plotted at 1% opacity to show the distribution of values at each efficiency.

storage operator makes more transactions because they can profitably arbitrage254

smaller price fluctuations. These effects combine to create a slightly nonlinear255

increase in profits with increasing efficiency, as shown in Fig. 6. A small number256

of nodes show high profits at low efficiencies due to significant negative price257

events, when inefficient loads would be paid for their ability to consume more258

energy.259

In Fig. 7 the number of charge/discharge cycles is plotted, and shows a260

slight plateau around 365 charges/year from arbitraging diurnal price differ-261

ences. There is a rapid increase in cycle count at high efficiencies because the262

optimization takes advantage of an increasing number of small variations in263

energy prices. While diurnal and midday/evening price differences occur very264

regularly, the more frequent trading seen above 95% efficiency is due to minor265

price fluctuations that may be difficult to predict without perfect foresight.266

The per-cycle profits shown in Fig. 8 stay fairly constant over the range of267

60-90% efficient systems, as the increase in profits is balanced by the increase268

in number of charge/discharge cycles. However, the per-cycle profits taper dra-269

matically at high efficiencies as the operator chases the small profits associated270
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Figure 8: Profit per cycle for each node under varying efficiencies, assuming a 1kW/1kWh

system. Each node is plotted at 1% opacity to show the distribution of values.

with frequent hourly price swings.271

4.4. Comparison with Prior Results272

Previous literature estimated the arbitrage value of storage on the CAISO273

grid to be in the range of $3-10/kWh/yr [3, 12]. These results are consistent with274

the median values shown above, but miss the long tail of high-value nodes. By275

assessing all LMP nodes, we see that there is a much wider range than previously276

reported, and that reporting a single value does not sufficiently characterize the277

distribution of storage value.278

Comparing our per-cycle profitability results with the storage system cost279

and lifetime estimates reported in [15] we find that arbitrage-only profits at high-280

value nodes could cover the capital costs of pumped-hydro storage, underground281

compressed-air energy storage, lead-acid batteries with carbon electrodes, and282

the DOE long-term electrochemical battery cost target. These findings are283

consistent with existing deployments, which are mostly comprised of pumped-284

hydro storage [14].285

While previous literature has not examined the optimal sizing of a transmission-286

scale storage system, the optimal sizes found here can be compared with current287
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storage installations. Consistent with our results, high-capacity (8+ hour) reser-288

voirs are only observed in pumped-hydro storage systems, while electrochemical289

battery systems are most frequently installed in 1-hour or smaller reservoir ca-290

pacities [14].291

4.5. Relaxing the Price-Taker Assumption292

The model presented above in 1 assumes that the LMP values are not im-293

pacted by the storage operator’s decision, but in reality a storage system used294

for arbitrage would smooth prices by providing additional supply when prices295

are high and additional demand when prices are low [4, 24]. In the following296

section we introduce a method for relaxing this price-taker assumption and show297

that the relaxation reduces profits for each node, but does not affect the relative298

distribution of profits across the grid.299

The impact of market elasticity on arbitrage profits in the PJM market was300

assessed in [10], using regional trading quantities and clearing prices. However,301

expanding this approach to nodal LMP calculations is difficult: transaction302

quantities are not available for individual LMP nodes on the CAISO grid, and303

local congestion creates nonlinear price elasticity [25].304

To overcome these challenges, we propose a simple method to approximate305

the impact of the storage system on local prices, without assuming that we have306

a linear elasticity or residual demand curve. We assume that buying energy307

will drive the market price up by a factor α, and selling energy will decrease308

prices by the same factor α, regardless of the quantity sold. For example, when309

α = 0.10, we assume that the LMP increases by 10% whenever the storage310

system is charged, and the LMP decreases by 10% whenever the storage system311

discharges.312

This does not affect the constraints 2 and only requires a linear modification313

to the objective function 1, which becomes:314

max
c(k),d(k),E(k),h

N∑
k=1

cgrid(k)∆t ((1 + α) c(k) + (1− α) d(k))− hγPdischarge (8)
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Figure 9: Impact of price responsiveness on storage operator profits. We assume that the

market price of energy is depressed by a factor α whenever the storage operator sells energy,

and is increased by α when the storage system buys energy. While profits decrease, the

distribution of the profits across nodes is preserved.

For a given value of α, the linearity of the problem is preserved. Because315

each node faces different transmission constraints and supply curves, no single316

value of α can be applied for all nodes- at each node, α would need to be317

estimated from supply disruptions, a study outside of the scope of the present318

work. Instead, we evaluate a range of values for α in Fig. 9, to see the impact of319

price sensitivity to the price-taker assumption on the profitability of a storage320

operator under a variety of conditions. As in Section 4.3, we present short-run321

profits for a 1kW/1kWh system at each LMP node.322

As α increases, the arbitrage potential decreases as price variations are323

smoothed out. However, the relative ordering and distribution of nodes is largely324

unaffected: our prior conclusions about the distribution and normality of nodes325

remain unaffected. If price/volume data were available, this assessment could be326

expanded to include a linear residual demand function at each node, resulting327

in a convex quadratic program as described in [10].328
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Figure 10: Histogram of nodal profits at 90% efficiency for 1kW/1kWh system, with best fit

of a normal distribution (estimated with maximum likelihood estimation)

4.6. Distribution of Results329

In the results above, storage profits are seen to not be uniform across nodes,330

but instead display a random component. If we were to a priori think of storage331

profits as the weighted sum of many uniform random variables (congestion,332

load, renewable energy intermittency, etc.), the Central Limit Theorem suggests333

that storage values would be distributed normally. However, in the results334

presented above and in Fig. 10, the distribution of storage profits appears to335

be significantly skewed.336

Using both the Kolmogorov-Smirnov and Jarque-Bera normality tests [26]337

on each of the efficiencies and metrics above, we can reject at the 1% significance338

level the a priori hypothesis of normal distribution. These findings emphasize339

the significance of high-value nodes in understanding storage feasibility, and340

how storage site location dictates system profitability.341

There appears to be a bimodal distribution in Fig. 10 which may indicate342

additional structure within this distribution; we plan to analyze this in future343

work.344
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Figure 11: Plot of short-run trading profits from energy arbitrage of a 90% efficient 1kW/1kWh

system at LMP nodes on the California ISO grid. Broad regions of high-value nodes in the

Northern and Southern coastal regions suggest large regions of congestion where storage may

have greatest impact.

4.7. Geographic Variation in Storage Value345

The profitability of storage systems at each LMP was mapped out in a GIS-346

like web application which the authors built to allow researchers to visualize347

price data on the CAISO grid [27]. This allows for the geographic localization of348

high-value and low-value nodes, and assessment of spatial trends. An example349

of this mapping application is shown in Fig. 11, highlighting annual trading350

profits for the 90% efficiency scenario. Note the clustering of higher-value nodes351

in the Eureka region and the San Diego foothills, suggesting that congestion in352

these areas may be partly relieved by the deployment of storage.353
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5. Discussion354

5.1. Limitations355

By construction, this study has only examined transmission-scale storage356

bidding into the wholesale energy market. Under current regulations, these357

results do not apply to behind-the-meter storage or vehicle-to-grid services, but358

could be applied if aggregators were allowed to bid into the wholesale energy359

market [28].360

We only consider bidding into the day-ahead energy market, but the results361

could be extended to cover sequential markets and ancillary services (AS), as has362

been done for single nodes in [11, 12, 22]. Since AS markets cover large regions363

(the CAISO grid has several thousand price nodes but only three ancillary364

service markets), the inclusion of AS markets would shift the profits of all storage365

operators in the AS market area without affecting their relative distribution.366

The current results reflect a best-case scenario, since they are based on367

perfect foresight and price-taking behavior using historical market data. The368

significance of diurnal and morning/evening bidding in most efficiency levels was369

shown in Fig. 7, suggesting that profits are relatively insensitive to relaxing the370

perfect foresight assumption (as has been done in [10] and [13]). The price-taker371

assumption was discussed in Section 4.5 and [10] and does not affect our con-372

clusions about optimal sizing, distribution of results, or geographic distribution373

of high-value nodes.374

Only price data for 2013 was analyzed; the inclusion of a larger data set375

would increase the robustness of the results by introducing variance in natural376

gas prices, hydropower availability, and renewable energy deployment. The377

optimal siting of a new storage system would also require forecasting future378

energy prices under different scenarios of renewable energy penetration.379

We have assumed that storage has a constant marginal cost, an assumption380

which could be relaxed for system which have significant economies of scale381

(pumped-hydro storage, flow batteries, and compressed-air energy storage) by382

replacing γ with an affine function of h, which would turn the problem into383
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a convex quadratic program. We have also assumed that the impact of the384

storage system on energy prices can be represented by a constant factor, a385

convenient proxy in the absence of historical price/quantity curves. For a specific386

node, a linear price elasticity or residual demand function could be integrated387

and result in a convex quadratic objective function. These two modifications388

modifications (affine economies of scale and linear price elasticity) involve affine389

terms in separate variables, and thus can both be integrated while preserving390

the convexity of the formulation.391

5.2. Conclusion392

Using historic price data for 2247 price nodes on the California electricity393

grid, we utilized a linear program to simultaneously optimize the dispatch and394

reservoir sizing of a storage system for temporal arbitrage in the day-ahead395

wholesale energy market. We find that the optimal reservoir size is strongly396

dependent on installed costs, and that systems with 4 hours of storage or more397

are only optimal when annualized reservoir costs are below $10/kWh/year. We398

explore the dependence of system profitability on efficiency, finding profits of $7-399

17/kWh/year or $10-27/kWh/1000 cycles for a 90% efficient storage system with400

1 hour of reservoir capacity. We find a long tail of nodes that are of significantly401

higher value than have been reported in previous studies, and can reject the402

hypothesis that storage values are normally distributed. Our revenue estimates403

show that some existing technologies reported in [15] may be profitable in the404

highest-value nodes. These results will be of interest to policy makers, utility405

planners, and storage developers, and will help guide the design and siting of406

new transmission-scale energy storage systems.407
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